*/}}

la_tns_shaders.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. #include "la_5.h"
  2. extern "C" const char* TNS_SHADER_COLOR_COMMON=R"(
  3. //okhsl by Björn Ottosson
  4. #define M_PI 3.1415926535897932384626433832795
  5. float cbrt( float x )
  6. {
  7. return sign(x)*pow(abs(x),1.0f/3.0f);
  8. }
  9. float srgb_transfer_function(float a)
  10. {
  11. return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
  12. }
  13. float srgb_transfer_function_inv(float a)
  14. {
  15. return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
  16. }
  17. vec3 linear_srgb_to_oklab(vec3 c)
  18. {
  19. float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
  20. float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
  21. float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
  22. float l_ = cbrt(l);
  23. float m_ = cbrt(m);
  24. float s_ = cbrt(s);
  25. return vec3(
  26. 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
  27. 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
  28. 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
  29. );
  30. }
  31. vec3 oklab_to_linear_srgb(vec3 c)
  32. {
  33. float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
  34. float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
  35. float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
  36. float l = l_ * l_ * l_;
  37. float m = m_ * m_ * m_;
  38. float s = s_ * s_ * s_;
  39. return vec3(
  40. +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
  41. -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
  42. -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
  43. );
  44. }
  45. // Finds the maximum saturation possible for a given hue that fits in sRGB
  46. // Saturation here is defined as S = C/L
  47. // a and b must be normalized so a^2 + b^2 == 1
  48. float compute_max_saturation(float a, float b)
  49. {
  50. // Max saturation will be when one of r, g or b goes below zero.
  51. // Select different coefficients depending on which component goes below zero first
  52. float k0, k1, k2, k3, k4, wl, wm, ws;
  53. if (-1.88170328f * a - 0.80936493f * b > 1.f)
  54. {
  55. // Red component
  56. k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
  57. wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
  58. }
  59. else if (1.81444104f * a - 1.19445276f * b > 1.f)
  60. {
  61. // Green component
  62. k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
  63. wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
  64. }
  65. else
  66. {
  67. // Blue component
  68. k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
  69. wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
  70. }
  71. // Approximate max saturation using a polynomial:
  72. float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
  73. // Do one step Halley's method to get closer
  74. // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
  75. // this should be sufficient for most applications, otherwise do two/three steps
  76. float k_l = +0.3963377774f * a + 0.2158037573f * b;
  77. float k_m = -0.1055613458f * a - 0.0638541728f * b;
  78. float k_s = -0.0894841775f * a - 1.2914855480f * b;
  79. {
  80. float l_ = 1.f + S * k_l;
  81. float m_ = 1.f + S * k_m;
  82. float s_ = 1.f + S * k_s;
  83. float l = l_ * l_ * l_;
  84. float m = m_ * m_ * m_;
  85. float s = s_ * s_ * s_;
  86. float l_dS = 3.f * k_l * l_ * l_;
  87. float m_dS = 3.f * k_m * m_ * m_;
  88. float s_dS = 3.f * k_s * s_ * s_;
  89. float l_dS2 = 6.f * k_l * k_l * l_;
  90. float m_dS2 = 6.f * k_m * k_m * m_;
  91. float s_dS2 = 6.f * k_s * k_s * s_;
  92. float f = wl * l + wm * m + ws * s;
  93. float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
  94. float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
  95. S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
  96. }
  97. return S;
  98. }
  99. // finds L_cusp and C_cusp for a given hue
  100. // a and b must be normalized so a^2 + b^2 == 1
  101. vec2 find_cusp(float a, float b)
  102. {
  103. // First, find the maximum saturation (saturation S = C/L)
  104. float S_cusp = compute_max_saturation(a, b);
  105. // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
  106. vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
  107. float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
  108. float C_cusp = L_cusp * S_cusp;
  109. return vec2( L_cusp , C_cusp );
  110. }
  111. // Finds intersection of the line defined by
  112. // L = L0 * (1 - t) + t * L1;
  113. // C = t * C1;
  114. // a and b must be normalized so a^2 + b^2 == 1
  115. float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp)
  116. {
  117. // Find the intersection for upper and lower half seprately
  118. float t;
  119. if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f)
  120. {
  121. // Lower half
  122. t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
  123. }
  124. else
  125. {
  126. // Upper half
  127. // First intersect with triangle
  128. t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1));
  129. // Then one step Halley's method
  130. {
  131. float dL = L1 - L0;
  132. float dC = C1;
  133. float k_l = +0.3963377774f * a + 0.2158037573f * b;
  134. float k_m = -0.1055613458f * a - 0.0638541728f * b;
  135. float k_s = -0.0894841775f * a - 1.2914855480f * b;
  136. float l_dt = dL + dC * k_l;
  137. float m_dt = dL + dC * k_m;
  138. float s_dt = dL + dC * k_s;
  139. // If higher accuracy is required, 2 or 3 iterations of the following block can be used:
  140. {
  141. float L = L0 * (1.f - t) + t * L1;
  142. float C = t * C1;
  143. float l_ = L + C * k_l;
  144. float m_ = L + C * k_m;
  145. float s_ = L + C * k_s;
  146. float l = l_ * l_ * l_;
  147. float m = m_ * m_ * m_;
  148. float s = s_ * s_ * s_;
  149. float ldt = 3.f * l_dt * l_ * l_;
  150. float mdt = 3.f * m_dt * m_ * m_;
  151. float sdt = 3.f * s_dt * s_ * s_;
  152. float ldt2 = 6.f * l_dt * l_dt * l_;
  153. float mdt2 = 6.f * m_dt * m_dt * m_;
  154. float sdt2 = 6.f * s_dt * s_dt * s_;
  155. float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
  156. float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
  157. float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
  158. float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
  159. float t_r = -r * u_r;
  160. float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
  161. float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
  162. float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
  163. float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
  164. float t_g = -g * u_g;
  165. float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
  166. float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
  167. float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
  168. float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
  169. float t_b = -b * u_b;
  170. t_r = u_r >= 0.f ? t_r : 10000.f;
  171. t_g = u_g >= 0.f ? t_g : 10000.f;
  172. t_b = u_b >= 0.f ? t_b : 10000.f;
  173. t += min(t_r, min(t_g, t_b));
  174. }
  175. }
  176. }
  177. return t;
  178. }
  179. float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
  180. {
  181. // Find the cusp of the gamut triangle
  182. vec2 cusp = find_cusp(a, b);
  183. return find_gamut_intersection(a, b, L1, C1, L0, cusp);
  184. }
  185. vec3 gamut_clip_preserve_chroma(vec3 rgb)
  186. {
  187. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  188. return rgb;
  189. vec3 lab = linear_srgb_to_oklab(rgb);
  190. float L = lab.x;
  191. float eps = 0.00001f;
  192. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  193. float a_ = lab.y / C;
  194. float b_ = lab.z / C;
  195. float L0 = clamp(L, 0.f, 1.f);
  196. float t = find_gamut_intersection(a_, b_, L, C, L0);
  197. float L_clipped = L0 * (1.f - t) + t * L;
  198. float C_clipped = t * C;
  199. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  200. }
  201. vec3 gamut_clip_project_to_0_5(vec3 rgb)
  202. {
  203. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  204. return rgb;
  205. vec3 lab = linear_srgb_to_oklab(rgb);
  206. float L = lab.x;
  207. float eps = 0.00001f;
  208. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  209. float a_ = lab.y / C;
  210. float b_ = lab.z / C;
  211. float L0 = 0.5;
  212. float t = find_gamut_intersection(a_, b_, L, C, L0);
  213. float L_clipped = L0 * (1.f - t) + t * L;
  214. float C_clipped = t * C;
  215. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  216. }
  217. vec3 gamut_clip_project_to_L_cusp(vec3 rgb)
  218. {
  219. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  220. return rgb;
  221. vec3 lab = linear_srgb_to_oklab(rgb);
  222. float L = lab.x;
  223. float eps = 0.00001f;
  224. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  225. float a_ = lab.y / C;
  226. float b_ = lab.z / C;
  227. // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
  228. vec2 cusp = find_cusp(a_, b_);
  229. float L0 = cusp.x;
  230. float t = find_gamut_intersection(a_, b_, L, C, L0);
  231. float L_clipped = L0 * (1.f - t) + t * L;
  232. float C_clipped = t * C;
  233. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  234. }
  235. vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha)
  236. {
  237. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  238. return rgb;
  239. vec3 lab = linear_srgb_to_oklab(rgb);
  240. float L = lab.x;
  241. float eps = 0.00001f;
  242. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  243. float a_ = lab.y / C;
  244. float b_ = lab.z / C;
  245. float Ld = L - 0.5f;
  246. float e1 = 0.5f + abs(Ld) + alpha * C;
  247. float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
  248. float t = find_gamut_intersection(a_, b_, L, C, L0);
  249. float L_clipped = L0 * (1.f - t) + t * L;
  250. float C_clipped = t * C;
  251. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  252. }
  253. vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha)
  254. {
  255. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  256. return rgb;
  257. vec3 lab = linear_srgb_to_oklab(rgb);
  258. float L = lab.x;
  259. float eps = 0.00001f;
  260. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  261. float a_ = lab.y / C;
  262. float b_ = lab.z / C;
  263. // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
  264. vec2 cusp = find_cusp(a_, b_);
  265. float Ld = L - cusp.x;
  266. float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
  267. float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
  268. float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
  269. float t = find_gamut_intersection(a_, b_, L, C, L0);
  270. float L_clipped = L0 * (1.f - t) + t * L;
  271. float C_clipped = t * C;
  272. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  273. }
  274. float toe(float x)
  275. {
  276. float k_1 = 0.206f;
  277. float k_2 = 0.03f;
  278. float k_3 = (1.f + k_1) / (1.f + k_2);
  279. return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
  280. }
  281. float toe_inv(float x)
  282. {
  283. float k_1 = 0.206f;
  284. float k_2 = 0.03f;
  285. float k_3 = (1.f + k_1) / (1.f + k_2);
  286. return (x * x + k_1 * x) / (k_3 * (x + k_2));
  287. }
  288. vec2 to_ST(vec2 cusp)
  289. {
  290. float L = cusp.x;
  291. float C = cusp.y;
  292. return vec2( C / L, C / (1.f - L) );
  293. }
  294. // Returns a smooth approximation of the location of the cusp
  295. // This polynomial was created by an optimization process
  296. // It has been designed so that S_mid < S_max and T_mid < T_max
  297. vec2 get_ST_mid(float a_, float b_)
  298. {
  299. float S = 0.11516993f + 1.f / (
  300. +7.44778970f + 4.15901240f * b_
  301. + a_ * (-2.19557347f + 1.75198401f * b_
  302. + a_ * (-2.13704948f - 10.02301043f * b_
  303. + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
  304. )))
  305. );
  306. float T = 0.11239642f + 1.f / (
  307. +1.61320320f - 0.68124379f * b_
  308. + a_ * (+0.40370612f + 0.90148123f * b_
  309. + a_ * (-0.27087943f + 0.61223990f * b_
  310. + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
  311. )))
  312. );
  313. return vec2( S, T );
  314. }
  315. vec3 get_Cs(float L, float a_, float b_)
  316. {
  317. vec2 cusp = find_cusp(a_, b_);
  318. float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
  319. vec2 ST_max = to_ST(cusp);
  320. // Scale factor to compensate for the curved part of gamut shape:
  321. float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
  322. float C_mid;
  323. {
  324. vec2 ST_mid = get_ST_mid(a_, b_);
  325. // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
  326. float C_a = L * ST_mid.x;
  327. float C_b = (1.f - L) * ST_mid.y;
  328. C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
  329. }
  330. float C_0;
  331. {
  332. // for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2.
  333. float C_a = L * 0.4f;
  334. float C_b = (1.f - L) * 0.8f;
  335. // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
  336. C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
  337. }
  338. return vec3( C_0, C_mid, C_max );
  339. }
  340. vec3 okhsl_to_srgb(vec3 hsl)
  341. {
  342. float h = hsl.x;
  343. float s = hsl.y;
  344. float l = hsl.z;
  345. if (l == 1.0f)
  346. {
  347. return vec3( 1.f, 1.f, 1.f );
  348. }
  349. else if (l == 0.f)
  350. {
  351. return vec3( 0.f, 0.f, 0.f );
  352. }
  353. float a_ = cos(2.f * M_PI * h);
  354. float b_ = sin(2.f * M_PI * h);
  355. float L = toe_inv(l);
  356. vec3 cs = get_Cs(L, a_, b_);
  357. float C_0 = cs.x;
  358. float C_mid = cs.y;
  359. float C_max = cs.z;
  360. float mid = 0.8f;
  361. float mid_inv = 1.25f;
  362. float C, t, k_0, k_1, k_2;
  363. if (s < mid)
  364. {
  365. t = mid_inv * s;
  366. k_1 = mid * C_0;
  367. k_2 = (1.f - k_1 / C_mid);
  368. C = t * k_1 / (1.f - k_2 * t);
  369. }
  370. else
  371. {
  372. t = (s - mid)/ (1.f - mid);
  373. k_0 = C_mid;
  374. k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  375. k_2 = (1.f - (k_1) / (C_max - C_mid));
  376. C = k_0 + t * k_1 / (1.f - k_2 * t);
  377. }
  378. vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
  379. return vec3(
  380. srgb_transfer_function(rgb.r),
  381. srgb_transfer_function(rgb.g),
  382. srgb_transfer_function(rgb.b)
  383. );
  384. }
  385. vec3 srgb_to_okhsl(vec3 rgb)
  386. {
  387. vec3 lab = linear_srgb_to_oklab(vec3(
  388. srgb_transfer_function_inv(rgb.r),
  389. srgb_transfer_function_inv(rgb.g),
  390. srgb_transfer_function_inv(rgb.b)
  391. ));
  392. float C = sqrt(lab.y * lab.y + lab.z * lab.z);
  393. float a_ = lab.y / C;
  394. float b_ = lab.z / C;
  395. float L = lab.x;
  396. float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
  397. vec3 cs = get_Cs(L, a_, b_);
  398. float C_0 = cs.x;
  399. float C_mid = cs.y;
  400. float C_max = cs.z;
  401. // Inverse of the interpolation in okhsl_to_srgb:
  402. float mid = 0.8f;
  403. float mid_inv = 1.25f;
  404. float s;
  405. if (C < C_mid)
  406. {
  407. float k_1 = mid * C_0;
  408. float k_2 = (1.f - k_1 / C_mid);
  409. float t = C / (k_1 + k_2 * C);
  410. s = t * mid;
  411. }
  412. else
  413. {
  414. float k_0 = C_mid;
  415. float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  416. float k_2 = (1.f - (k_1) / (C_max - C_mid));
  417. float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
  418. s = mid + (1.f - mid) * t;
  419. }
  420. float l = toe(L);
  421. return vec3( h, s, l );
  422. }
  423. vec3 okhsv_to_srgb(vec3 hsv)
  424. {
  425. float h = hsv.x;
  426. float s = hsv.y;
  427. float v = hsv.z;
  428. float a_ = cos(2.f * M_PI * h);
  429. float b_ = sin(2.f * M_PI * h);
  430. vec2 cusp = find_cusp(a_, b_);
  431. vec2 ST_max = to_ST(cusp);
  432. float S_max = ST_max.x;
  433. float T_max = ST_max.y;
  434. float S_0 = 0.5f;
  435. float k = 1.f- S_0 / S_max;
  436. // first we compute L and V as if the gamut is a perfect triangle:
  437. // L, C when v==1:
  438. float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
  439. float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
  440. float L = v * L_v;
  441. float C = v * C_v;
  442. // then we compensate for both toe and the curved top part of the triangle:
  443. float L_vt = toe_inv(L_v);
  444. float C_vt = C_v * L_vt / L_v;
  445. float L_new = toe_inv(L);
  446. C = C * L_new / L;
  447. L = L_new;
  448. vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
  449. float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
  450. L = L * scale_L;
  451. C = C * scale_L;
  452. vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
  453. return vec3(
  454. srgb_transfer_function(rgb.r),
  455. srgb_transfer_function(rgb.g),
  456. srgb_transfer_function(rgb.b)
  457. );
  458. }
  459. vec3 srgb_to_okhsv(vec3 rgb)
  460. {
  461. vec3 lab = linear_srgb_to_oklab(vec3(
  462. srgb_transfer_function_inv(rgb.r),
  463. srgb_transfer_function_inv(rgb.g),
  464. srgb_transfer_function_inv(rgb.b)
  465. ));
  466. float C = sqrt(lab.y * lab.y + lab.z * lab.z);
  467. float a_ = lab.y / C;
  468. float b_ = lab.z / C;
  469. float L = lab.x;
  470. float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
  471. vec2 cusp = find_cusp(a_, b_);
  472. vec2 ST_max = to_ST(cusp);
  473. float S_max = ST_max.x;
  474. float T_max = ST_max.y;
  475. float S_0 = 0.5f;
  476. float k = 1.f - S_0 / S_max;
  477. // first we find L_v, C_v, L_vt and C_vt
  478. float t = T_max / (C + L * T_max);
  479. float L_v = t * L;
  480. float C_v = t * C;
  481. float L_vt = toe_inv(L_v);
  482. float C_vt = C_v * L_vt / L_v;
  483. // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
  484. vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
  485. float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
  486. L = L / scale_L;
  487. C = C / scale_L;
  488. C = C * toe(L) / L;
  489. L = toe(L);
  490. // we can now compute v and s:
  491. float v = L / L_v;
  492. float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
  493. return vec3 (h, s, v );
  494. }
  495. )";