|
@@ -1,389 +1,236 @@
|
|
#include "la_5.h"
|
|
#include "la_5.h"
|
|
-
|
|
|
|
extern "C" const char* TNS_SHADER_COLOR_COMMON=R"(
|
|
extern "C" const char* TNS_SHADER_COLOR_COMMON=R"(
|
|
-//okhsl by Björn Ottosson
|
|
|
|
-
|
|
|
|
#define M_PI 3.1415926535897932384626433832795
|
|
#define M_PI 3.1415926535897932384626433832795
|
|
-
|
|
|
|
-float cbrt( float x )
|
|
|
|
-{
|
|
|
|
|
|
+float cbrt( float x ){
|
|
return sign(x)*pow(abs(x),1.0f/3.0f);
|
|
return sign(x)*pow(abs(x),1.0f/3.0f);
|
|
}
|
|
}
|
|
-
|
|
|
|
-float srgb_transfer_function(float a)
|
|
|
|
-{
|
|
|
|
|
|
+float srgb_transfer_function(float a){
|
|
return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
|
|
return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
|
|
}
|
|
}
|
|
-
|
|
|
|
-float srgb_transfer_function_inv(float a)
|
|
|
|
-{
|
|
|
|
|
|
+float srgb_transfer_function_inv(float a){
|
|
return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
|
|
return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 linear_srgb_to_oklab(vec3 c)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 to_log_srgb(vec3 color){
|
|
|
|
+ return vec3(srgb_transfer_function(color.r),srgb_transfer_function(color.g),srgb_transfer_function(color.b));
|
|
|
|
+}
|
|
|
|
+vec3 to_linear_srgb(vec3 color){
|
|
|
|
+ return vec3(srgb_transfer_function_inv(color.r),srgb_transfer_function_inv(color.g),srgb_transfer_function_inv(color.b));
|
|
|
|
+}
|
|
|
|
+vec3 linear_srgb_to_oklab(vec3 c){
|
|
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
|
|
float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
|
|
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
|
|
float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
|
|
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
|
|
float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
|
|
-
|
|
|
|
float l_ = cbrt(l);
|
|
float l_ = cbrt(l);
|
|
float m_ = cbrt(m);
|
|
float m_ = cbrt(m);
|
|
float s_ = cbrt(s);
|
|
float s_ = cbrt(s);
|
|
-
|
|
|
|
return vec3(
|
|
return vec3(
|
|
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
|
|
0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
|
|
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
|
|
1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
|
|
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
|
|
0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
|
|
);
|
|
);
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 oklab_to_linear_srgb(vec3 c)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 oklab_to_linear_srgb(vec3 c){
|
|
float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
|
|
float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
|
|
float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
|
|
float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
|
|
float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
|
|
float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
|
|
-
|
|
|
|
float l = l_ * l_ * l_;
|
|
float l = l_ * l_ * l_;
|
|
float m = m_ * m_ * m_;
|
|
float m = m_ * m_ * m_;
|
|
float s = s_ * s_ * s_;
|
|
float s = s_ * s_ * s_;
|
|
-
|
|
|
|
return vec3(
|
|
return vec3(
|
|
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
|
|
+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
|
|
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
|
|
-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
|
|
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
|
|
-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
|
|
);
|
|
);
|
|
}
|
|
}
|
|
-
|
|
|
|
-// Finds the maximum saturation possible for a given hue that fits in sRGB
|
|
|
|
-// Saturation here is defined as S = C/L
|
|
|
|
-// a and b must be normalized so a^2 + b^2 == 1
|
|
|
|
-float compute_max_saturation(float a, float b)
|
|
|
|
-{
|
|
|
|
- // Max saturation will be when one of r, g or b goes below zero.
|
|
|
|
-
|
|
|
|
- // Select different coefficients depending on which component goes below zero first
|
|
|
|
- float k0, k1, k2, k3, k4, wl, wm, ws;
|
|
|
|
-
|
|
|
|
- if (-1.88170328f * a - 0.80936493f * b > 1.f)
|
|
|
|
- {
|
|
|
|
- // Red component
|
|
|
|
- k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
|
|
|
|
|
|
+float compute_max_saturation(float a, float b){ float k0, k1, k2, k3, k4, wl, wm, ws;
|
|
|
|
+ if (-1.88170328f * a - 0.80936493f * b > 1.f){ k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
|
|
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
|
|
wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
|
|
}
|
|
}
|
|
- else if (1.81444104f * a - 1.19445276f * b > 1.f)
|
|
|
|
- {
|
|
|
|
- // Green component
|
|
|
|
- k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
|
|
|
|
|
|
+ else if (1.81444104f * a - 1.19445276f * b > 1.f){ k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
|
|
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
|
|
wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
|
|
}
|
|
}
|
|
- else
|
|
|
|
- {
|
|
|
|
- // Blue component
|
|
|
|
- k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
|
|
|
|
|
|
+ else{ k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
|
|
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
|
|
wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
|
|
- }
|
|
|
|
-
|
|
|
|
- // Approximate max saturation using a polynomial:
|
|
|
|
- float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
|
|
|
|
-
|
|
|
|
- // Do one step Halley's method to get closer
|
|
|
|
- // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
|
|
|
|
- // this should be sufficient for most applications, otherwise do two/three steps
|
|
|
|
-
|
|
|
|
|
|
+ } float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
|
|
float k_l = +0.3963377774f * a + 0.2158037573f * b;
|
|
float k_l = +0.3963377774f * a + 0.2158037573f * b;
|
|
float k_m = -0.1055613458f * a - 0.0638541728f * b;
|
|
float k_m = -0.1055613458f * a - 0.0638541728f * b;
|
|
- float k_s = -0.0894841775f * a - 1.2914855480f * b;
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
|
|
+ float k_s = -0.0894841775f * a - 1.2914855480f * b;{
|
|
float l_ = 1.f + S * k_l;
|
|
float l_ = 1.f + S * k_l;
|
|
float m_ = 1.f + S * k_m;
|
|
float m_ = 1.f + S * k_m;
|
|
float s_ = 1.f + S * k_s;
|
|
float s_ = 1.f + S * k_s;
|
|
-
|
|
|
|
float l = l_ * l_ * l_;
|
|
float l = l_ * l_ * l_;
|
|
float m = m_ * m_ * m_;
|
|
float m = m_ * m_ * m_;
|
|
float s = s_ * s_ * s_;
|
|
float s = s_ * s_ * s_;
|
|
-
|
|
|
|
float l_dS = 3.f * k_l * l_ * l_;
|
|
float l_dS = 3.f * k_l * l_ * l_;
|
|
float m_dS = 3.f * k_m * m_ * m_;
|
|
float m_dS = 3.f * k_m * m_ * m_;
|
|
float s_dS = 3.f * k_s * s_ * s_;
|
|
float s_dS = 3.f * k_s * s_ * s_;
|
|
-
|
|
|
|
float l_dS2 = 6.f * k_l * k_l * l_;
|
|
float l_dS2 = 6.f * k_l * k_l * l_;
|
|
float m_dS2 = 6.f * k_m * k_m * m_;
|
|
float m_dS2 = 6.f * k_m * k_m * m_;
|
|
float s_dS2 = 6.f * k_s * k_s * s_;
|
|
float s_dS2 = 6.f * k_s * k_s * s_;
|
|
-
|
|
|
|
float f = wl * l + wm * m + ws * s;
|
|
float f = wl * l + wm * m + ws * s;
|
|
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
|
|
float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
|
|
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
|
|
float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
|
|
-
|
|
|
|
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
|
|
S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
|
|
}
|
|
}
|
|
-
|
|
|
|
return S;
|
|
return S;
|
|
}
|
|
}
|
|
-
|
|
|
|
-// finds L_cusp and C_cusp for a given hue
|
|
|
|
-// a and b must be normalized so a^2 + b^2 == 1
|
|
|
|
-vec2 find_cusp(float a, float b)
|
|
|
|
-{
|
|
|
|
- // First, find the maximum saturation (saturation S = C/L)
|
|
|
|
- float S_cusp = compute_max_saturation(a, b);
|
|
|
|
-
|
|
|
|
- // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
|
|
|
|
- vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
|
|
|
|
|
|
+vec2 find_cusp(float a, float b){ float S_cusp = compute_max_saturation(a, b); vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
|
|
float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
|
|
float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
|
|
float C_cusp = L_cusp * S_cusp;
|
|
float C_cusp = L_cusp * S_cusp;
|
|
-
|
|
|
|
return vec2( L_cusp , C_cusp );
|
|
return vec2( L_cusp , C_cusp );
|
|
}
|
|
}
|
|
-
|
|
|
|
-// Finds intersection of the line defined by
|
|
|
|
-// L = L0 * (1 - t) + t * L1;
|
|
|
|
-// C = t * C1;
|
|
|
|
-// a and b must be normalized so a^2 + b^2 == 1
|
|
|
|
-float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp)
|
|
|
|
-{
|
|
|
|
- // Find the intersection for upper and lower half seprately
|
|
|
|
- float t;
|
|
|
|
- if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f)
|
|
|
|
- {
|
|
|
|
- // Lower half
|
|
|
|
-
|
|
|
|
|
|
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp){ float t;
|
|
|
|
+ if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f){
|
|
t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
|
|
t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
|
|
}
|
|
}
|
|
- else
|
|
|
|
- {
|
|
|
|
- // Upper half
|
|
|
|
-
|
|
|
|
- // First intersect with triangle
|
|
|
|
- t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1));
|
|
|
|
-
|
|
|
|
- // Then one step Halley's method
|
|
|
|
- {
|
|
|
|
|
|
+ else{ t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1)); {
|
|
float dL = L1 - L0;
|
|
float dL = L1 - L0;
|
|
float dC = C1;
|
|
float dC = C1;
|
|
-
|
|
|
|
float k_l = +0.3963377774f * a + 0.2158037573f * b;
|
|
float k_l = +0.3963377774f * a + 0.2158037573f * b;
|
|
float k_m = -0.1055613458f * a - 0.0638541728f * b;
|
|
float k_m = -0.1055613458f * a - 0.0638541728f * b;
|
|
float k_s = -0.0894841775f * a - 1.2914855480f * b;
|
|
float k_s = -0.0894841775f * a - 1.2914855480f * b;
|
|
-
|
|
|
|
float l_dt = dL + dC * k_l;
|
|
float l_dt = dL + dC * k_l;
|
|
float m_dt = dL + dC * k_m;
|
|
float m_dt = dL + dC * k_m;
|
|
- float s_dt = dL + dC * k_s;
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- // If higher accuracy is required, 2 or 3 iterations of the following block can be used:
|
|
|
|
- {
|
|
|
|
|
|
+ float s_dt = dL + dC * k_s; {
|
|
float L = L0 * (1.f - t) + t * L1;
|
|
float L = L0 * (1.f - t) + t * L1;
|
|
float C = t * C1;
|
|
float C = t * C1;
|
|
-
|
|
|
|
float l_ = L + C * k_l;
|
|
float l_ = L + C * k_l;
|
|
float m_ = L + C * k_m;
|
|
float m_ = L + C * k_m;
|
|
float s_ = L + C * k_s;
|
|
float s_ = L + C * k_s;
|
|
-
|
|
|
|
float l = l_ * l_ * l_;
|
|
float l = l_ * l_ * l_;
|
|
float m = m_ * m_ * m_;
|
|
float m = m_ * m_ * m_;
|
|
float s = s_ * s_ * s_;
|
|
float s = s_ * s_ * s_;
|
|
-
|
|
|
|
float ldt = 3.f * l_dt * l_ * l_;
|
|
float ldt = 3.f * l_dt * l_ * l_;
|
|
float mdt = 3.f * m_dt * m_ * m_;
|
|
float mdt = 3.f * m_dt * m_ * m_;
|
|
float sdt = 3.f * s_dt * s_ * s_;
|
|
float sdt = 3.f * s_dt * s_ * s_;
|
|
-
|
|
|
|
float ldt2 = 6.f * l_dt * l_dt * l_;
|
|
float ldt2 = 6.f * l_dt * l_dt * l_;
|
|
float mdt2 = 6.f * m_dt * m_dt * m_;
|
|
float mdt2 = 6.f * m_dt * m_dt * m_;
|
|
float sdt2 = 6.f * s_dt * s_dt * s_;
|
|
float sdt2 = 6.f * s_dt * s_dt * s_;
|
|
-
|
|
|
|
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
|
|
float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
|
|
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
|
|
float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
|
|
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
|
|
float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
|
|
-
|
|
|
|
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
|
|
float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
|
|
float t_r = -r * u_r;
|
|
float t_r = -r * u_r;
|
|
-
|
|
|
|
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
|
|
float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
|
|
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
|
|
float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
|
|
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
|
|
float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
|
|
-
|
|
|
|
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
|
|
float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
|
|
float t_g = -g * u_g;
|
|
float t_g = -g * u_g;
|
|
-
|
|
|
|
float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
|
|
float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
|
|
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
|
|
float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
|
|
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
|
|
float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
|
|
-
|
|
|
|
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
|
|
float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
|
|
float t_b = -b * u_b;
|
|
float t_b = -b * u_b;
|
|
-
|
|
|
|
t_r = u_r >= 0.f ? t_r : 10000.f;
|
|
t_r = u_r >= 0.f ? t_r : 10000.f;
|
|
t_g = u_g >= 0.f ? t_g : 10000.f;
|
|
t_g = u_g >= 0.f ? t_g : 10000.f;
|
|
t_b = u_b >= 0.f ? t_b : 10000.f;
|
|
t_b = u_b >= 0.f ? t_b : 10000.f;
|
|
-
|
|
|
|
t += min(t_r, min(t_g, t_b));
|
|
t += min(t_r, min(t_g, t_b));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
return t;
|
|
return t;
|
|
}
|
|
}
|
|
-
|
|
|
|
-float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
|
|
|
|
-{
|
|
|
|
- // Find the cusp of the gamut triangle
|
|
|
|
- vec2 cusp = find_cusp(a, b);
|
|
|
|
-
|
|
|
|
|
|
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0){ vec2 cusp = find_cusp(a, b);
|
|
return find_gamut_intersection(a, b, L1, C1, L0, cusp);
|
|
return find_gamut_intersection(a, b, L1, C1, L0, cusp);
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 gamut_clip_preserve_chroma(vec3 rgb)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 gamut_clip_preserve_chroma(vec3 rgb){
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
return rgb;
|
|
return rgb;
|
|
-
|
|
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float eps = 0.00001f;
|
|
float eps = 0.00001f;
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
float b_ = lab.z / C;
|
|
float b_ = lab.z / C;
|
|
-
|
|
|
|
float L0 = clamp(L, 0.f, 1.f);
|
|
float L0 = clamp(L, 0.f, 1.f);
|
|
-
|
|
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float C_clipped = t * C;
|
|
float C_clipped = t * C;
|
|
-
|
|
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 gamut_clip_project_to_0_5(vec3 rgb)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 gamut_clip_project_to_0_5(vec3 rgb){
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
return rgb;
|
|
return rgb;
|
|
-
|
|
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float eps = 0.00001f;
|
|
float eps = 0.00001f;
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
float b_ = lab.z / C;
|
|
float b_ = lab.z / C;
|
|
-
|
|
|
|
float L0 = 0.5;
|
|
float L0 = 0.5;
|
|
-
|
|
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float C_clipped = t * C;
|
|
float C_clipped = t * C;
|
|
-
|
|
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 gamut_clip_project_to_L_cusp(vec3 rgb)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 gamut_clip_project_to_L_cusp(vec3 rgb){
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
return rgb;
|
|
return rgb;
|
|
-
|
|
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float eps = 0.00001f;
|
|
float eps = 0.00001f;
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
- float b_ = lab.z / C;
|
|
|
|
-
|
|
|
|
- // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
|
|
|
|
- vec2 cusp = find_cusp(a_, b_);
|
|
|
|
-
|
|
|
|
|
|
+ float b_ = lab.z / C; vec2 cusp = find_cusp(a_, b_);
|
|
float L0 = cusp.x;
|
|
float L0 = cusp.x;
|
|
-
|
|
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
-
|
|
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float C_clipped = t * C;
|
|
float C_clipped = t * C;
|
|
-
|
|
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha){
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
return rgb;
|
|
return rgb;
|
|
-
|
|
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float eps = 0.00001f;
|
|
float eps = 0.00001f;
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
float b_ = lab.z / C;
|
|
float b_ = lab.z / C;
|
|
-
|
|
|
|
float Ld = L - 0.5f;
|
|
float Ld = L - 0.5f;
|
|
float e1 = 0.5f + abs(Ld) + alpha * C;
|
|
float e1 = 0.5f + abs(Ld) + alpha * C;
|
|
float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
|
|
float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
|
|
-
|
|
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float C_clipped = t * C;
|
|
float C_clipped = t * C;
|
|
-
|
|
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha){
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
|
|
return rgb;
|
|
return rgb;
|
|
-
|
|
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
vec3 lab = linear_srgb_to_oklab(rgb);
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float eps = 0.00001f;
|
|
float eps = 0.00001f;
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
- float b_ = lab.z / C;
|
|
|
|
-
|
|
|
|
- // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
|
|
|
|
- vec2 cusp = find_cusp(a_, b_);
|
|
|
|
-
|
|
|
|
|
|
+ float b_ = lab.z / C; vec2 cusp = find_cusp(a_, b_);
|
|
float Ld = L - cusp.x;
|
|
float Ld = L - cusp.x;
|
|
float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
|
|
float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
|
|
-
|
|
|
|
float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
|
|
float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
|
|
float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
|
|
float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
|
|
-
|
|
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float t = find_gamut_intersection(a_, b_, L, C, L0);
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float L_clipped = L0 * (1.f - t) + t * L;
|
|
float C_clipped = t * C;
|
|
float C_clipped = t * C;
|
|
-
|
|
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
|
|
}
|
|
}
|
|
-
|
|
|
|
-float toe(float x)
|
|
|
|
-{
|
|
|
|
|
|
+float toe(float x){
|
|
float k_1 = 0.206f;
|
|
float k_1 = 0.206f;
|
|
float k_2 = 0.03f;
|
|
float k_2 = 0.03f;
|
|
float k_3 = (1.f + k_1) / (1.f + k_2);
|
|
float k_3 = (1.f + k_1) / (1.f + k_2);
|
|
return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
|
|
return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
|
|
}
|
|
}
|
|
-
|
|
|
|
-float toe_inv(float x)
|
|
|
|
-{
|
|
|
|
|
|
+float toe_inv(float x){
|
|
float k_1 = 0.206f;
|
|
float k_1 = 0.206f;
|
|
float k_2 = 0.03f;
|
|
float k_2 = 0.03f;
|
|
float k_3 = (1.f + k_1) / (1.f + k_2);
|
|
float k_3 = (1.f + k_1) / (1.f + k_2);
|
|
return (x * x + k_1 * x) / (k_3 * (x + k_2));
|
|
return (x * x + k_1 * x) / (k_3 * (x + k_2));
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec2 to_ST(vec2 cusp)
|
|
|
|
-{
|
|
|
|
|
|
+vec2 to_ST(vec2 cusp){
|
|
float L = cusp.x;
|
|
float L = cusp.x;
|
|
float C = cusp.y;
|
|
float C = cusp.y;
|
|
return vec2( C / L, C / (1.f - L) );
|
|
return vec2( C / L, C / (1.f - L) );
|
|
}
|
|
}
|
|
-
|
|
|
|
-// Returns a smooth approximation of the location of the cusp
|
|
|
|
-// This polynomial was created by an optimization process
|
|
|
|
-// It has been designed so that S_mid < S_max and T_mid < T_max
|
|
|
|
-vec2 get_ST_mid(float a_, float b_)
|
|
|
|
-{
|
|
|
|
|
|
+vec2 get_ST_mid(float a_, float b_){
|
|
float S = 0.11516993f + 1.f / (
|
|
float S = 0.11516993f + 1.f / (
|
|
+7.44778970f + 4.15901240f * b_
|
|
+7.44778970f + 4.15901240f * b_
|
|
+ a_ * (-2.19557347f + 1.75198401f * b_
|
|
+ a_ * (-2.19557347f + 1.75198401f * b_
|
|
@@ -391,7 +238,6 @@ vec2 get_ST_mid(float a_, float b_)
|
|
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
|
|
+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
|
|
)))
|
|
)))
|
|
);
|
|
);
|
|
-
|
|
|
|
float T = 0.11239642f + 1.f / (
|
|
float T = 0.11239642f + 1.f / (
|
|
+1.61320320f - 0.68124379f * b_
|
|
+1.61320320f - 0.68124379f * b_
|
|
+ a_ * (+0.40370612f + 0.90148123f * b_
|
|
+ a_ * (+0.40370612f + 0.90148123f * b_
|
|
@@ -399,93 +245,55 @@ vec2 get_ST_mid(float a_, float b_)
|
|
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
|
|
+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
|
|
)))
|
|
)))
|
|
);
|
|
);
|
|
-
|
|
|
|
return vec2( S, T );
|
|
return vec2( S, T );
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 get_Cs(float L, float a_, float b_)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 get_Cs(float L, float a_, float b_){
|
|
vec2 cusp = find_cusp(a_, b_);
|
|
vec2 cusp = find_cusp(a_, b_);
|
|
-
|
|
|
|
float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
|
|
float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
|
|
- vec2 ST_max = to_ST(cusp);
|
|
|
|
-
|
|
|
|
- // Scale factor to compensate for the curved part of gamut shape:
|
|
|
|
- float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
|
|
|
|
-
|
|
|
|
- float C_mid;
|
|
|
|
- {
|
|
|
|
- vec2 ST_mid = get_ST_mid(a_, b_);
|
|
|
|
-
|
|
|
|
- // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
|
|
|
|
- float C_a = L * ST_mid.x;
|
|
|
|
|
|
+ vec2 ST_max = to_ST(cusp); float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
|
|
|
|
+ float C_mid;{
|
|
|
|
+ vec2 ST_mid = get_ST_mid(a_, b_); float C_a = L * ST_mid.x;
|
|
float C_b = (1.f - L) * ST_mid.y;
|
|
float C_b = (1.f - L) * ST_mid.y;
|
|
C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
|
|
C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
|
|
}
|
|
}
|
|
-
|
|
|
|
- float C_0;
|
|
|
|
- {
|
|
|
|
- // for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2.
|
|
|
|
- float C_a = L * 0.4f;
|
|
|
|
- float C_b = (1.f - L) * 0.8f;
|
|
|
|
-
|
|
|
|
- // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
|
|
|
|
- C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
|
|
|
|
|
|
+ float C_0;{ float C_a = L * 0.4f;
|
|
|
|
+ float C_b = (1.f - L) * 0.8f; C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
|
|
}
|
|
}
|
|
-
|
|
|
|
return vec3( C_0, C_mid, C_max );
|
|
return vec3( C_0, C_mid, C_max );
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 okhsl_to_srgb(vec3 hsl)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 okhsl_to_srgb(vec3 hsl){
|
|
float h = hsl.x;
|
|
float h = hsl.x;
|
|
float s = hsl.y;
|
|
float s = hsl.y;
|
|
float l = hsl.z;
|
|
float l = hsl.z;
|
|
-
|
|
|
|
- if (l == 1.0f)
|
|
|
|
- {
|
|
|
|
|
|
+ if (l == 1.0f){
|
|
return vec3( 1.f, 1.f, 1.f );
|
|
return vec3( 1.f, 1.f, 1.f );
|
|
}
|
|
}
|
|
-
|
|
|
|
- else if (l == 0.f)
|
|
|
|
- {
|
|
|
|
|
|
+ else if (l == 0.f){
|
|
return vec3( 0.f, 0.f, 0.f );
|
|
return vec3( 0.f, 0.f, 0.f );
|
|
}
|
|
}
|
|
-
|
|
|
|
float a_ = cos(2.f * M_PI * h);
|
|
float a_ = cos(2.f * M_PI * h);
|
|
float b_ = sin(2.f * M_PI * h);
|
|
float b_ = sin(2.f * M_PI * h);
|
|
float L = toe_inv(l);
|
|
float L = toe_inv(l);
|
|
-
|
|
|
|
vec3 cs = get_Cs(L, a_, b_);
|
|
vec3 cs = get_Cs(L, a_, b_);
|
|
float C_0 = cs.x;
|
|
float C_0 = cs.x;
|
|
float C_mid = cs.y;
|
|
float C_mid = cs.y;
|
|
float C_max = cs.z;
|
|
float C_max = cs.z;
|
|
-
|
|
|
|
float mid = 0.8f;
|
|
float mid = 0.8f;
|
|
float mid_inv = 1.25f;
|
|
float mid_inv = 1.25f;
|
|
-
|
|
|
|
float C, t, k_0, k_1, k_2;
|
|
float C, t, k_0, k_1, k_2;
|
|
-
|
|
|
|
- if (s < mid)
|
|
|
|
- {
|
|
|
|
|
|
+ if (s < mid){
|
|
t = mid_inv * s;
|
|
t = mid_inv * s;
|
|
-
|
|
|
|
k_1 = mid * C_0;
|
|
k_1 = mid * C_0;
|
|
k_2 = (1.f - k_1 / C_mid);
|
|
k_2 = (1.f - k_1 / C_mid);
|
|
-
|
|
|
|
C = t * k_1 / (1.f - k_2 * t);
|
|
C = t * k_1 / (1.f - k_2 * t);
|
|
}
|
|
}
|
|
- else
|
|
|
|
- {
|
|
|
|
|
|
+ else{
|
|
t = (s - mid)/ (1.f - mid);
|
|
t = (s - mid)/ (1.f - mid);
|
|
-
|
|
|
|
k_0 = C_mid;
|
|
k_0 = C_mid;
|
|
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
|
|
k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
|
|
k_2 = (1.f - (k_1) / (C_max - C_mid));
|
|
k_2 = (1.f - (k_1) / (C_max - C_mid));
|
|
-
|
|
|
|
C = k_0 + t * k_1 / (1.f - k_2 * t);
|
|
C = k_0 + t * k_1 / (1.f - k_2 * t);
|
|
}
|
|
}
|
|
-
|
|
|
|
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
|
|
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
|
|
return vec3(
|
|
return vec3(
|
|
srgb_transfer_function(rgb.r),
|
|
srgb_transfer_function(rgb.r),
|
|
@@ -493,62 +301,44 @@ vec3 okhsl_to_srgb(vec3 hsl)
|
|
srgb_transfer_function(rgb.b)
|
|
srgb_transfer_function(rgb.b)
|
|
);
|
|
);
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 srgb_to_okhsl(vec3 rgb)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 srgb_to_okhsl(vec3 rgb){
|
|
vec3 lab = linear_srgb_to_oklab(vec3(
|
|
vec3 lab = linear_srgb_to_oklab(vec3(
|
|
srgb_transfer_function_inv(rgb.r),
|
|
srgb_transfer_function_inv(rgb.r),
|
|
srgb_transfer_function_inv(rgb.g),
|
|
srgb_transfer_function_inv(rgb.g),
|
|
srgb_transfer_function_inv(rgb.b)
|
|
srgb_transfer_function_inv(rgb.b)
|
|
));
|
|
));
|
|
-
|
|
|
|
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
|
|
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
float b_ = lab.z / C;
|
|
float b_ = lab.z / C;
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
|
|
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
|
|
-
|
|
|
|
vec3 cs = get_Cs(L, a_, b_);
|
|
vec3 cs = get_Cs(L, a_, b_);
|
|
float C_0 = cs.x;
|
|
float C_0 = cs.x;
|
|
float C_mid = cs.y;
|
|
float C_mid = cs.y;
|
|
float C_max = cs.z;
|
|
float C_max = cs.z;
|
|
-
|
|
|
|
- // Inverse of the interpolation in okhsl_to_srgb:
|
|
|
|
-
|
|
|
|
float mid = 0.8f;
|
|
float mid = 0.8f;
|
|
float mid_inv = 1.25f;
|
|
float mid_inv = 1.25f;
|
|
-
|
|
|
|
float s;
|
|
float s;
|
|
- if (C < C_mid)
|
|
|
|
- {
|
|
|
|
|
|
+ if (C < C_mid){
|
|
float k_1 = mid * C_0;
|
|
float k_1 = mid * C_0;
|
|
float k_2 = (1.f - k_1 / C_mid);
|
|
float k_2 = (1.f - k_1 / C_mid);
|
|
-
|
|
|
|
float t = C / (k_1 + k_2 * C);
|
|
float t = C / (k_1 + k_2 * C);
|
|
s = t * mid;
|
|
s = t * mid;
|
|
}
|
|
}
|
|
- else
|
|
|
|
- {
|
|
|
|
|
|
+ else{
|
|
float k_0 = C_mid;
|
|
float k_0 = C_mid;
|
|
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
|
|
float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
|
|
float k_2 = (1.f - (k_1) / (C_max - C_mid));
|
|
float k_2 = (1.f - (k_1) / (C_max - C_mid));
|
|
-
|
|
|
|
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
|
|
float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
|
|
s = mid + (1.f - mid) * t;
|
|
s = mid + (1.f - mid) * t;
|
|
}
|
|
}
|
|
-
|
|
|
|
float l = toe(L);
|
|
float l = toe(L);
|
|
return vec3( h, s, l );
|
|
return vec3( h, s, l );
|
|
}
|
|
}
|
|
-
|
|
|
|
-
|
|
|
|
-vec3 okhsv_to_srgb(vec3 hsv)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 okhsv_to_srgb(vec3 hsv){
|
|
float h = hsv.x;
|
|
float h = hsv.x;
|
|
float s = hsv.y;
|
|
float s = hsv.y;
|
|
float v = hsv.z;
|
|
float v = hsv.z;
|
|
-
|
|
|
|
float a_ = cos(2.f * M_PI * h);
|
|
float a_ = cos(2.f * M_PI * h);
|
|
float b_ = sin(2.f * M_PI * h);
|
|
float b_ = sin(2.f * M_PI * h);
|
|
|
|
|
|
@@ -557,31 +347,18 @@ vec3 okhsv_to_srgb(vec3 hsv)
|
|
float S_max = ST_max.x;
|
|
float S_max = ST_max.x;
|
|
float T_max = ST_max.y;
|
|
float T_max = ST_max.y;
|
|
float S_0 = 0.5f;
|
|
float S_0 = 0.5f;
|
|
- float k = 1.f- S_0 / S_max;
|
|
|
|
-
|
|
|
|
- // first we compute L and V as if the gamut is a perfect triangle:
|
|
|
|
-
|
|
|
|
- // L, C when v==1:
|
|
|
|
- float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
|
|
|
|
|
|
+ float k = 1.f- S_0 / S_max; float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
|
|
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
|
|
float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
|
|
-
|
|
|
|
float L = v * L_v;
|
|
float L = v * L_v;
|
|
- float C = v * C_v;
|
|
|
|
-
|
|
|
|
- // then we compensate for both toe and the curved top part of the triangle:
|
|
|
|
- float L_vt = toe_inv(L_v);
|
|
|
|
|
|
+ float C = v * C_v; float L_vt = toe_inv(L_v);
|
|
float C_vt = C_v * L_vt / L_v;
|
|
float C_vt = C_v * L_vt / L_v;
|
|
-
|
|
|
|
float L_new = toe_inv(L);
|
|
float L_new = toe_inv(L);
|
|
C = C * L_new / L;
|
|
C = C * L_new / L;
|
|
L = L_new;
|
|
L = L_new;
|
|
-
|
|
|
|
vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
|
|
vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
|
|
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
|
|
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
|
|
-
|
|
|
|
L = L * scale_L;
|
|
L = L * scale_L;
|
|
C = C * scale_L;
|
|
C = C * scale_L;
|
|
-
|
|
|
|
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
|
|
vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
|
|
return vec3(
|
|
return vec3(
|
|
srgb_transfer_function(rgb.r),
|
|
srgb_transfer_function(rgb.r),
|
|
@@ -589,54 +366,35 @@ vec3 okhsv_to_srgb(vec3 hsv)
|
|
srgb_transfer_function(rgb.b)
|
|
srgb_transfer_function(rgb.b)
|
|
);
|
|
);
|
|
}
|
|
}
|
|
-
|
|
|
|
-vec3 srgb_to_okhsv(vec3 rgb)
|
|
|
|
-{
|
|
|
|
|
|
+vec3 srgb_to_okhsv(vec3 rgb){
|
|
vec3 lab = linear_srgb_to_oklab(vec3(
|
|
vec3 lab = linear_srgb_to_oklab(vec3(
|
|
srgb_transfer_function_inv(rgb.r),
|
|
srgb_transfer_function_inv(rgb.r),
|
|
srgb_transfer_function_inv(rgb.g),
|
|
srgb_transfer_function_inv(rgb.g),
|
|
srgb_transfer_function_inv(rgb.b)
|
|
srgb_transfer_function_inv(rgb.b)
|
|
));
|
|
));
|
|
-
|
|
|
|
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
|
|
float C = sqrt(lab.y * lab.y + lab.z * lab.z);
|
|
float a_ = lab.y / C;
|
|
float a_ = lab.y / C;
|
|
float b_ = lab.z / C;
|
|
float b_ = lab.z / C;
|
|
-
|
|
|
|
float L = lab.x;
|
|
float L = lab.x;
|
|
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
|
|
float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
|
|
-
|
|
|
|
vec2 cusp = find_cusp(a_, b_);
|
|
vec2 cusp = find_cusp(a_, b_);
|
|
vec2 ST_max = to_ST(cusp);
|
|
vec2 ST_max = to_ST(cusp);
|
|
float S_max = ST_max.x;
|
|
float S_max = ST_max.x;
|
|
float T_max = ST_max.y;
|
|
float T_max = ST_max.y;
|
|
float S_0 = 0.5f;
|
|
float S_0 = 0.5f;
|
|
float k = 1.f - S_0 / S_max;
|
|
float k = 1.f - S_0 / S_max;
|
|
-
|
|
|
|
- // first we find L_v, C_v, L_vt and C_vt
|
|
|
|
-
|
|
|
|
float t = T_max / (C + L * T_max);
|
|
float t = T_max / (C + L * T_max);
|
|
float L_v = t * L;
|
|
float L_v = t * L;
|
|
float C_v = t * C;
|
|
float C_v = t * C;
|
|
-
|
|
|
|
float L_vt = toe_inv(L_v);
|
|
float L_vt = toe_inv(L_v);
|
|
- float C_vt = C_v * L_vt / L_v;
|
|
|
|
-
|
|
|
|
- // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
|
|
|
|
- vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
|
|
|
|
|
|
+ float C_vt = C_v * L_vt / L_v; vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
|
|
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
|
|
float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
|
|
-
|
|
|
|
L = L / scale_L;
|
|
L = L / scale_L;
|
|
C = C / scale_L;
|
|
C = C / scale_L;
|
|
-
|
|
|
|
C = C * toe(L) / L;
|
|
C = C * toe(L) / L;
|
|
L = toe(L);
|
|
L = toe(L);
|
|
-
|
|
|
|
- // we can now compute v and s:
|
|
|
|
-
|
|
|
|
float v = L / L_v;
|
|
float v = L / L_v;
|
|
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
|
|
float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
|
|
-
|
|
|
|
return vec3 (h, s, v );
|
|
return vec3 (h, s, v );
|
|
}
|
|
}
|
|
-
|
|
|
|
)";
|
|
)";
|